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SUMMARY:

With the recent advances in machine learning, strategies based on data can be used to augment wall modeling in
the turbulent boundary layer. Combined with the attached eddy hypothesis, the present work applies the extreme
gradient boosting model to predict the large-scale high/low-speed motions in the outer layer by the input of fixed
near-wall large-scale motions. The trained extreme gradient boosting model gives well prediction of high- and low-
speed regions of large-scale motions throughout the entire turbulent boundary layer given the input velocity field at
z+ = 4. The organized patterns of coherent structures are attached given connected features between inner and outer
motions resulting in the premise of the current study. The accuracy analysis, which is defined by the percentage of the
correctly predicted high-speed or low-speed regions, shows that the prediction accuracy is as high as 90% throughout
the boundary layer. This study shows that there is a great opportunity in machine learning for wall-bounded turbulence
modeling by connecting the flow interactions from near-wall motions to well above.
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1. INTRODUCTION AND METHODOLOGY
Townsend (1976) put out a theoretical framework for wall-bounded flow called the attached eddy
hypothesis (AEH), which idealizes wall-bounded flow as a group of inertia-driven coherent struc-
tures that are self-similar and randomly dispersed in the plane of the wall. A recent summary by
Marusic and Monty (2019) provides details on the main AEH assumptions and restrictions. Perry
and Chong (1982) suggested that these coherent structures, or eddies, scale with the distance from
the wall with the height of the eddies following a geometric development on the basis of AEH.
The boundary layer community has published evidence in favor of self-similarity and wall-scaling
(e.g., W. J. Baars et al., 2017; Hwang, 2015; Jiménez, 2012; Marusic, W. J. Baars, et al., 2017).
Besides the foundation of AEH, Marusic, McKeon, et al. (2010) introduced a mathematical model
to predict the near-wall turbulence given only large-scale information from the outer boundary
layer region. Inspired by the role of near-wall motions on outer layer ones, we expect to conduct
a model to predict outer layer motions based on the physical models of flow interactions from a
machine learning perspective.

Extreme gradient boosting (XGBoost) is a scalable machine learning system for tree boosting
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Figure 1. (a) A hierarchical range of self-similar wall-attached turbulent eddy structures, simplified by
parallelograms and ellipses. An arbitrary self-similar scaling factor of χ = 1.2 is chosen to proportion. (b) Illustration

of the eddy geometry with streamwise wavelength Lx and wall-normal length Lz, the structure inclination angle α

can equivalently be expressed as a phase shift ∆t between signals at different wall-normal locations.
{X−10, ...,X−1,X0,X1, ...,X10} represent the input large-scale streamwise velocity fluctuations components at the fixed

near-wall height (z+R = 4), and Y0 indicates the signal at traveled heights in the turbulent boundary layer. The
neighboring offset between {Xi}(i =−10 : 1 : 10) is ∆x = 20dx, where dx is the streamwise grid-length. The

streamwise offset between X0 and Y0 is 0.

that was proposed by Chen and Guestrin (2016), and takes superior performance in supervised
machine learning. Li et al. (2020) demonstrated the capacity of this model to recognize the physical
processes involved in turbulent transport by using the XGBoost model trained using flow invariants
to detect the interface between turbulent and non-turbulent flow in the wake of a circular cylinder.
Given the physical models proposed in AEH, the XGBoost will be used in the current work to
connect the high/low-speed regions of the large-scale motions in the outer boundary layer with the
foundation of the near-wall motions.

Here, we give a short illustration of the XGBoost. XGBoost works as Newton-Raphson and a
second-order Taylor approximation is used in the loss function to make the connection to the
Newton-Raphson method. Each decision tree outputs an identification label Fx,z,t(Y0) ∈ [0,1] at
each grid point (Y0) to identify the flow state, where the subscripts x and z indicate the spatial
locations, t represents the current tree. The final prediction, Fx,z(Y0), is a weighted sum of the
predictions from all T -trees. We identify the region where F̂x,z(Y0) is bigger than a threshold
σt ∈ [0,1] as the positive prediction using the convectional criterion, i.e.



F̂x,z(Y0) =

{
0, Fx,z(Y0)≤ σt ,

1, Fx,z(Y0)> σt .
(1)

In addition, the accuracy of the prediction ‘Ac’ to the large-scale motions from the fixed near wall
signal to the traveled signals in the turbulent boundary layer is defined as the percentage of the
correctly predicted high-speed or low-speed regions and we note that, by definition, 0 ≤Ac≤ 1.
Notably, the parameters of the XGBoost model are set as the default in the current study.

The velocity pulsation (u) is low-pass-filtered to obtain large-scale (uL) and small-scale (uS) fluc-
tuations by using the threshold wavelength of λ = δ . u+L is normalized by the friction velocity uτ .
Figure 1(a) shows an idealization of a self-similar hierarchy of wall-attached structures within the
logarithmic region of a turbulent boundary layer in streamwise-wall-normal (x− z) plane (Baidya
et al., 2019; Deshpande et al., 2019; Marusic and Monty, 2019). Here, three hierarchy levels of
randomly positioned patches of coherent velocity fluctuations are taken into consideration, with
each hierarchy being represented by a separate color. For simplicity, we consider the volume of
influence of eddies, in each level, to be characterized by Lzi in z direction, with i = 1,2,3 denot-
ing the ith hierarchy level. Thus, self-similar eddies with their spatial length constrained by the
scaling factor χ are assumed as sketched in figure 1(a). The self-similar structure feature is also
identified from the coherence between the turbulence in the logarithmic region and at the near-wall
reference position by W. J. Baars et al. (2017). The current work attempts to predict the high/low-
speed regions of large-scale motions in the entire turbulent boundary layer from the machine-
learning perspective based on the near-wall large-scale motions, as illustrated in figure 1(b). The
signals used as input variables are set as large-scale streamwise velocity components labeled as
{X−10, ...,X−1,X0,X1, ...,X10}, with the streamwise offset ∆x = 20dx at a fixed near-wall reference
position z+R = 4. The output predicted signal obtained from the large-scale motions is located at a
wall-normal range of locations higher than z+R = 4 as well as right above the input X0.

2. DATABASE
The dataset used in this work is taken by direct numerical simulations of turbulent channel flow
(Graham et al., 2016). The DNS solves the incompressible Navier-Stokes (NS) equations in a
periodic channel. The computation domain is 8πh×3πh×2h, with Grid Nx ×Ny ×Nz = 2048×
1563× 512 in the streamwise (x), spanwise (y) and wall-normal (z) directions, respectively. The
half-channel height is unity (h = 1). The offset between two horizontal neighboring grids is dx =
8π/Nx. The friction Reynolds number of the direct numerical simulations is Reτ ≈1000, where
the data can be accessed through the Johns Hopkins Turbulence Database (http://turbulence.
pha.jhu.edu/).

3. RESULTS
Figure 2 gives an example of an illustration of how the model was built and used to predict the
high/low-speed large-scale motions between the fixed near-wall height zR and a wall-normal range
of locations z. Figure 2(a) indicates the raw large-scale motions for the streamwise velocity col-
lected at z/δ = 0.0045 (grey) and z/δ = 0.1 (blue), evidencing that highly-correlated features
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Figure 2. An example of time series large-scale streamwise velocity fluctuation at heights z/δ = 0.0045 (grey) and
z/δ = 0.1 (blue). Black and green shadows indicate the high- and low-speed regions. (b) The labeled high-speed

region at z/δ = 0.1 with true or not marked by 1 or 0, respectively. The blue solid line ‘H-Val’ indicates the
validation obtained from the large-scale signal in (a). The red line ‘H-Pre’ represents the prediction value Fx,z(Y0) by
the XGBoost model, in the ranges from 0 to 1. The dashed black line ‘H-La-Pre’ is identified by the red line with a
threshold value larger than σt = 0.5 as the positive prediction marked as 1, otherwise marked as 0. (c) similar to (b)
but identifying the low-speed region marked as 1. (d) and (e) give the accuracy (Ac) for high-speed and low-speed

prediction, respectively, as a function of wall-normal heights z/δ , with increasing threshold σt = 0.1 : 0.1 : 0.9
indicated by lighter and thicker shades of blue. The black lines indicate the threshold σt = 0.5.

between them. The prediction for high-speed regions of large-scale motions from the signal at
z/δ = 0.1 (blue in figure 2a) is shown in figure 2(b). ‘H-Val’ indicates raw large-scale motions
labeled as 1 and 0 representing high-speed and non-high-speed regions, respectively. ‘H-Pre’ is
the output of the predicted value obtained from the identification label Fx,z,t . ‘H-La-Pre’ is ob-
tained from F̂x,z(Y0) with σt = 0.5 in equation (1). Similarly, figure 2(c) gives the prediction of the
low-speed regions. Good matches between ‘H-Val’ and ‘H-La-Pre’ (or ‘L-Val’ and ‘L-La-Pre’)
show the great performance of the current prediction model. Figure 2(c) and (d) give the accuracy
(Ac) analysis for high-speed and low-speed prediction at different wall-normal heights (z/δ ) and
σt (0.1:0.1:0.9) in equation (1). Obvious to see, σt = 0.5 gives the best prediction, further to be
used in the following sections.
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Figure 3. (a) Contours of large-scale streamwise velocity fluctuation u+L in x− z plane. (b) Observed high- and
low-speed regions marked as 1 and 0, respectively. (c) and (d) represent the predicted high- and low-speed regions

with σt = 0.5 by (1).

The contour of large-scale streamwise velocity fluctuation u+L in x− z plane is given in figure 3(a),
which has been replaced by 1 (marked as red) and 0 (marked as blue), showing in figure 3(b),
representing high- and low-speed regions, respectively. Figure 3(c) and (d) show the prediction of
high- and low-speed regions filled with red and blue shadows representing the positive prediction
obtained from ‘H-La-Pre’ and ‘L-La-Pre’ in figure 2. Obviously, the prediction is successful result-
ing in the physical model (AEM) based machine learning method being suitable to be a predicted
way in the turbulent boundary layer.

4. CONCLUSION
A machine learning model based on XGBoost was used to detect the large-scale wall-attached
eddies connecting with Townsend’s AEH in the turbulent boundary layer. The model gives a
prediction of the high/low-speed regions of large-scale motions that match well with the observed
flow field by the input of large-scale motions in near-wall regions. It identifies that it is a successful
combination of the machine learning model and physical model in the turbulent boundary layer.
In the future, the structure inclination angles of the large-scale motions associated with model
features (e.g., feature importance) will be studied in more detail.
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